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Abstract. The braid group representations associated with the eight-dimensional representa- 
tion of B,  and six-dimensional representation of A , ,  including the quantum Lie algebra 
connected with the latter, are explicitly calculated. 

1. Introduction 

Recently much progress has been made in deriving the braid group representations 
(BGR).  To find BGR the different types of approaches have been formulated [l-161. 
One of them is based on reducing the known quantum R ( x )  matrix (where x relates 
to the spectral parameter U). For instance, Wadati et al [9] derived the BGR and link 
polynomials other than Jones’ by taking the limit of the known R ( x )  matrices for spin 
models (under the symmetry breaking transformation). Turaev discussed the cases of 
B,, C, and D, in their fundamental representations by reducing Jimbo’s results on 
R ( x )  matrices associated with the generalised Toda lattice [ 101. Another type of 
approach is direct calculation. They are typically state models, especially the Yang- 
Baxter state model [6, 7, 151, and the general constructions of BGR for simple Lie 
algebras hy Reshetikhin [ l l ] .  We know that the derivations of R ( x )  are much more 
diincult than those of BGR which is denoted by S (=R(O) in Jimbo’s ‘gauge’ [17-191). 
Meanwhile from the point of view of physics we prefer the direct calculation to the 
reduction versions. 

In general it needs a lot of computation to find BGR as the dimensions of the Lie 
algebras are large. For instance, in the Yang-Baxter state model the state expansions 
are very complicated [7 ,9 ,  151 and in the group approach [ 113 the calculations of the 
projectors are also lengthy. In comparison with Jimbo’s works [17-191 the direct 
derivation approaches are almost on the same level as the ‘full’ quantum group (QG) 

version [ 131. Therefore the key point for constructing BGR is to facilitate the computa- 
tions in the direct derivation approach. 

In this paper we present a more practical approach for the direct derivation of BGR 

in which the Witten and Wilson loop theory of link polynomials based on a (2+1)  
Chern-Simons Lagrangian plays the central role. We shall combine the decompositions 
of direct products for Lie algebra representations, Yang-Baxter state expansions [7, 
1 1 ,  151, and the Markov trace [9] with Witten’s version [14, 20, 211 to calculate two 
BGR corresponding to the eight-dimensional representations of B3 and six-dimensional 
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representation of SU(3). These two examples are beyond the discussions restricted to 
only the fundamental representations of Lie algebras as made in the current literature. 

2. The universality of Witten's approach 

The original discussions on the link theory based on the (2+ 1)-dimensional Chern- 
Simons Lagrangian are concerned with the fundamental representations of SU( N ) .  
However, by making comparisons with other projection theories it is easy to see that 
the approach works for any decomposition of R 0 R = 0 E, which give rise to the 
eigenvalues of BGR [14, 20, 211 

A i  = j - q c a R - i a E , )  (2.1) 

where 

q=exp[fi.rr/(k+ C,)] 

and A stands for the corresponding Casimir eigenvalues. 
The reduction relation for the BGR S is 

n n ( S - A i ) = O .  
i = l  

The framing factor f is given by 

where P( Lm-l) denotes ( m  - 1) crossing polynomials. The meaning of (x. . . $) and 
other conventions are referred to in [14,21]. The skein relation has the form 

-. . .+ f -" ( - l )"  fl A i  P ( L - , ) = O .  

The Markov trace is defined as 

@ ( A )  =Tr(Afi)  

where the matrix A can be any crossing block and fi is given by 

A = l i x l i x . .  . x i  6= h/[O1 
The diagonal matrix h is given by [9, 111 

h = 6 t - 2 ( & W . ) =  6 t - U a )  
a b  a b  a b  

where 6 is the half sum of simple roots and Wa denotes the weight labelled by index 
a. We note that the sum 

is independent of index U.  The normalisation of S:: can be made in an arbitrary way. 
For example 
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or 
s a ”  = [-(  W R l 2  

aa 

which gives rise to 

(2.9) 

(2.10) 

(2.11) 

W, denotes the highest weight of representation R. The factor 
a’/’ = (?/.)‘/’= t A R  

plays an important role in the construction of polynomials just as f in (2.3). Obviously, 
in comparison with Witten’s approach we have 

(2.12) f = -11’ a 

if this condition holds: 

t = q  (2.13) 

which is known as the trace-cross-channel unitarity [7, 151. 

2.1. Kaufman s state model 

The link polynomial is defined by 

s 

where 

(2.14) 

(2.15) 

The notations adopted here refer to [7, 151. For example the norm 11 s’ll is given by 

IIS’II = c rot(a)(2SWa) 
Comp(S) 

where a suitable label set { a }  is understood [12, 221. 
Because the calculations show 

A = 7  

and the writhe 

W (  y.: .y)= - m  
m 

W( ,\= . . . S ) = m 
L_1 

m 

(2.14) is equivalent to the definition of link polynomials in [7]. 
There are two possibilities for closure of the graph 

a* 

(2.16) 

(2.17) 
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One of them is trivial: 
@ - g. 

The other provides the trace-cross-channel unitarity 

a h  

Cz.3 = 2 s ~ ~ ( s - l ) ~ ~ t - " a ) r - L ' b ) l - L ( c )  

= 2 t - L ( c )  =[O]. (2.18) 
C 

Thus the trace-cross-channel unitarity is automatically satisfied, provided t = q. 
Now, throughout the above discussions we have pointed out that the three 

approaches are closely related and sometimes they are equivalent. The Witten approach 
is more powerful not only in the explicit forms of the eigenvalues but also in their 
connections with the CFT. 

In the following we shall employ any one of the three approaches when it is able 
to simplify the calculations. As we see later this 'combining operation' is effective in 
deriving BGR and is a general method. 

3. The explicit derivation of BCR associated with an eight-dimensional representation 
of B3 

In order to carry out the arguments of [ 11, 141 we first note that for the decomposition 
~ ' O , O , $ @  D'O.O,$ = D;O,O,$'@ D p O )  + D!$O,O'@ Dg,o,o' 

(3.1) Dim 8 8 35 21 7 1 

there are the weight vectors 
w - ( L  -1 1) 

3 -  2 ,  2 9 4  
w - ( O  1 -1) w7 = (090, 3 5 -  9 2 ,  4 

w, = ( t , O ,  -$, W-,=(-;,O,a) w-, = (-1 2 ,  I 2 ,  I) 4 (3.2) 

w-, = (0, - 5 ,  a, w-7 = (0, 0, - 4). 
They obey the weight conservations 

w,+ w,= wc+ w, 
and are grouped by: 

(a )  8-fold weights, 4-fold weights 

w, + w-, = 0 

w,+ W, = W7+ W, = ( ~ , O , O )  

w,+ w-, = w7+ w-3 = c - ; ,  f ,  0) 

W7+ w-,= w,+ w-,=(O,-;,j) 
w5+ w-7= WI+ W-3=(0 , t , - ; )  

w3+ w-7= w,+ W-5=(4, -4,O) 

(3.3) 
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( b )  2-fold weights 

w5+ w7 = (0, f ,  0) 
w7+ w,=(f , - ; , ; )  w-,+ W-3=(--1,$,0) 
w7+ W-l=(- t ,O, ; )  w-,+ w-l=( - ; , - ; , f )  

w,+ w, = ( f ,  f ,  - f )  W, + W7 = ( t ,  0, - f )  
w3+ w, = (1, - f ,  0) w-,+ W - 7 = ( - f , f ,  -f) 
w,+ w-3 = ( - f ,  1, - 4 )  w_5+ w-, = (0, - f , O )  

WO+ WO. 

w3+ W-,=(f ,  -1,;) 

( c )  single-fold weights 

With the above weight analysis the BGR S has the block diagonal form 

S = block diag(A,, A 2 , .  . . , A,, As, A 7 , .  . . , A2, A,) 

where 

609 

A, = 

A, = 

As = 

PI 
PI 

U 

PI w1 
P1 W1 

P7 
Pa 
0 

P9 
0 

4 5  

P9 
0 

w9 

0 

q6 

A,  = 

P2 

A i = [  p3 :: 
P2 91 42 w2 
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where the vacancies mean 0 in the submatrices. 
The eigenvalues can be determined by the Casimirs 

A I  = 9' A 2 -  - - q - '  A 3 -  - - q - 9  A 4  = q-" 

and the framing factor is 

f = t - 2 '  

with 

t = q  

where 

q=exp(--)=re 1 i77 

4 C , + k  

We note that (2.13) is the consequence of the trace-cross-channel unitarity. 

relation immediately: 
In terms of the Witten version we write the eigenvalue equation and the skein 

( s - ~ ~ ) ( s - ~ - ' ) ( s - ~ - ~ ) ( s - ~ - ~ ' ) = o  
and 

P(L,+)= t ' 8 ( 1 - r 4 - t ' 2 + t 2 4 ) ~ ( ~ 2 + ) + t 4 0 ( 1 + t 8 + r 2 4 + t 3 2 - f ' 2 - t 2 0 ) P ( ~ + )  

- t ' "P(L-)+ t70(1 - t " -  Po+ t 2 4 ) ~ ( ~ o ) .  (3.4) 
The Markov trace under this case has come from 

f 4 a + 2  a>: 
L ( a )  = t4a  la1 s $  1 t4a-2 a<-: 

h a b  = 6 o b t L ( a )  

and 
[o]=C t L ( a ) =  t ' g + r ' 4 + t 6 + t Z + t - ' + t - 6 + t - ' 4 + t - ' 8  

a 

with the label set 
a b E ( i  s 1 I -1 -1 - 5  - Z )  , , 2 9 2 9 2 ,  2 ,  2 ,  2 ,  2 * 

The general considerations preserve 

C ( S - l ) a b h  ob h b -  - t - 2 1  S:: hbh = t2' 
b b 

namely 

7 = t - 2 '  5 = t 2 ' .  

We next determine the elements in the submatrices. 
(i) From the eigenvalues A i  it is easy to know that 

(3.5) 
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(ii) Equation (3.5) leads to 

2 q3qI8 = A = q2’ 

a =$  q3qI4+ w , q ” =  A 

a = ;  q3q6+ w3ql J+  w , q ” =  A 

i.e. w3 = wl(  1 + qw4) and w2 = wl(  1 + q- ’ )  

a=’ 2 q3q2+ W 6 q 6 +  W I q l 4 +  W 2 q ” = A * W g =  W1. 

(iii) Two diagrams without annihilations give 

w9 = w5 = w3 w4 = w2 = w, w 1 = w 6 =  w8. 

(iv) Using (iii) and the Markov trace we have 

a = -‘j 2 w 1 3 = O  

a = -$*w12 = wl(  1 - q-8) 

a = -;*wll = W 1 ( l - q - 1 6 )  

a = - + W I O  = w, ( 1 + 4-8 - q - 1 2  - 4 - 2 0 ) .  

(v) The other parameters, p and q, can be determined by the 37 diagrams with 
annihilations. 

Noting that there are only six independent conditions provided by (3.5) we thus 
have 6 + 2 + 37 = 45 constraint conditions plus one equality in total which matches the 
number of parameters appearing in the submatrices Ai (2  + 13 + 13 + 18 = 46). Putting 
it all together we derive the final answers: 

u = q  (3.6) 

and 

P1 =P6 = P8 = p2 = p3 = p4 = ps = p7 ‘ pg = p9 = U-’ 

P l o =  PI1 = PI2 = PI3 = 

w1 = U 3  - U-1  w2 = W I (  1 + U P )  w j  = W I  (1 + U -“) w4 = w7 = w2 

wg = w3 = w9 W6 = Wg = WI w10 = w2( 1 - u-12) W I ,  = w , ( l -  U - s )  

w,2 = W , ( l  - U - 8 )  ~ 1 3  = 0 

q1 = u-2w1 q 2 =  -u-4q1 q 3  = 45 = 41 
(3.7) 

q 4 =  q 6  = 42 q 7  = K 4 W 1  9 8  = -u-8wl 99 = u-2w2 

q , o =  u-12w1 411 = -u-6w2 912 = u-I0w2 q l )  = u-2w3 

~ I ~ = - U - ~ W I  4 1 5  = - P W 3  q 1 6 =  u-I2w1 q l 7 =  u - ~ w I  

41 8 = wj .  

Thus, based on the Witten version and Reshetikhin discussions [ l l ,  141 we know 
that the eight-dimensional case of B3 is similar to the case of G,  as discussed in [ 113. 
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4. The representation of the braid group and the polynomials associated with the 
six-dimensional representation of A 

We now turn to carry out the arguments shown in [ 11,141 for the case of six-dimensional 
representations of A2. In this case the decomposition is 

6 0 6  = 0 E, = 1 5 3  15,@6,. 

The corresponding eigenvalues are A I ,  A 2  and A 3 ,  respectively. The corresponding 
Casimirs are 

A -32 A -6 A -20 1 -  3 2 -  3 3 - 30 A R  =? 

which give the eigenvalues 

A ,  = u4 A 2  = - f 2  A 3  = U-’ 

where 

(4.1) 

2iri 4 
u = exp( -- -) 

3 C + k ’  (4.2) 

(4.3) 

where 

and  

a = 6 , 2  
a =0, -2 
a = -4, -6. 

Using the eigenvalues and  the framing factor it is easy to write out the skein relation 
in the form 

P( L2+) = (Y I”PP( L*)  + a y P (  Lo) + a312SP(L-)  

p = v 4 - y - 2 + u - 5  y = u 2 - u - 1  +U-’ 6 = -U-’ 

( Y = 7 / r = u -  20 , 

where 

Taking U = I-’  we obtain 

P(L,,) = P o (  I 5  - f 2 +  r 4 ) P ( L + )  + Po( 1’- I +  P ) P (  Lo) - f3”( L - ) .  (4.4) 
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To determine the explicit form of the BGR we first specify the weight conservation 
conditions. The weight vectors under the case are 

w -1 W,=J(2, -1, -1) 2-3(l, l9 -2)  

W,=f(l ,  - 2 , l )  W-,=3(-1,2, -1) 

w-,=f(-2, I ,  1) w-6=-3(1, 1, -2) 

where the label set of the weights has been taken to be (6,2,0, -2, -4, -6) in accordance 
with the weight conservation. 

To write down the block diagonal submatrices of S we list the requirements due 
to the weight conservation as the following: 

w6+ w6 1 0 1  matrix 
w6+ w2 2 0 2  matrix w6+ 2 0 2  matrix 
2w2= W6+ w-* 3 0 3  matrix W6 + w-, = w, + WO 4 0 4  matrix 
2w,= w,+ w-, 5 0 5  matrix w*+ w-, = WO+ w-, 5 0 5  matrix 
w, + w-, = w, + w-, 
w-6 + w, ( * )  w-, + w-, 4 0 4  matrix 
w-,+ w-,=2w-4 3 0 3  matrix 
w-,+ w-, 2 0 2  matrix 
w-, + w-, 1 0 1  matrix 

We therefore have the general form: 

4 0 4  matrix 

, Ail), A a ) ,  AY), A(3) A(2’ ~ ( 3 1  S =block Diag(A,, Ai”, Ai2’, Ai’), A“’ 4 ,  3 9 2 , A I )  

where 

P3 
P4 9 2  

P4 w4 93 
P3 92 93 w3 

0 

0 

P6 
0 

U 2  

0 
95 

P6 
0 

w6 

0 

- 
PS 
0 

95 
0 

w5 - 
The same method can be used to determine the parameters appearing in the 

submatrices Ai as done in section 3. 
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First we take the traces of Ai that give 

w3+ w4= A I  + 2A2 + A 3  

U2 + W5 + W6 = 2A1-t 2A2+ A 3  w7= A I  + 2A2+ A 3 .  

Equation (4.3) proves six-constraint conditions and the parameters p and q should be 
determined by the diagrams with annihilations. Putting all the solutions together we 
have 

U ,  = u4 U2 = v w 1 -  - w 6 = u 4 - u - 2  

w 4 = v - u - 2  w,= v4-2v-2+v-5 

w2 = w3 = w5 = w,( l  - 

We thus complete the braid group representations associated with the six- 
dimensional representation of A2 based on combining the general discussion with 
Witten’s approach and the extended diagrammatic calculations [ 11, 14, 151. 

5. The associated quantum algebras 

The general theory was discussed first by Reshetikhin, Takhtajan and Faddeev, see 
[13, 221, based on the algebraic functions of quantum n-dimensional vector space Cz 
associated with the relation 

f ( R ) ( x O x )  = 0 (5.1) 

where f ( d )  is a polynomial of l? = PR as the usual notation. 
We now want to give the quantum Lie algebras associated with six-dimensional 

representation of SU(3) using the RTF method [22]. The I? here is the braid group 
representation S in our notation. Supposing S has been known, for example, by the 
general derivation as shown in [22] or its concrete computation with the aid of Witten’s 
approach [14, 201, the projectors are then given. For the given eigenvalues A I  (with 
multiplicity m]), . . . , A,, (with multiplicity m,,) the diagonal matrix is denoted by 

A = diag(A,, . . . , A , ,  A 2 , .  . . , A 2 , .  . . , A,, . . . , A,) -- - 
ml m2 m. 
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(5.2) 

= i AIP:Pd),,, (5.3) 
, = I  

where (a), ( p ) ,  . , . , are the double indices of the matrix S and ( a )  indicates the 
submatrix. Note that m, = 0. 

The Pi"' stand for the projectors relating with the submatrices A , , , :  

Following RTF it is easy to write the quantum Lie algebras with the help of L' 
where L' is the transpose of L. For instance, in the case of spin 1 (O(3)) the eigenvalues 
are A = t, - t  and tC2 and correspondingly for the largest submatrix 

where 

a = l + r ( l +  t )*+  t4  b = t + t - '  

Keeping in mind the implications of the label set of S it is easy to read the 

c = 1 + t + t 2 .  

corresponding commutation relations of the quantum algebras. They are 

for A ,  = t XIX-I  + t2x-,x, = t " 2 ( 1 +  t )x i  

for A 2  = - - - '  x,x-,-x-,XI=-t  ( 1 - t ) x i  

for A' = t-' tx,x-, +x-,x,  = -t"2xZ, 

-1 /2  

where t = q - ' ,  in comparison to [ 2 2 ] .  

s= u - ' S  instead of S and put 
Now we turn to the case of section 4. For convenience in the following we use 

U'= t 

in (4.5). Corresponding to the submatrices A 2 ,  A,, A!,'', Ai2', Ay',  &IJ, and we have 
- 

( 1  + t 2 ) " 2  [: 1'1 L2 = 

l / c '  

- l / b '  
( l / b ' ) t C ' i 2 ( l  - t )  - t I i 2 / c '  

l l b '  

where 

a' = ( I  + t + 2 t 2 +  t'+ t 4 ) I  ' 
b' = ( t  + t - I ) I l 2  c' = ( 1  + t + t 2 ) 1 / 2  
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L y ) =  

cy) = 

By specifying the labelled set (6 ,2 ,0 ,  -2, -4, -6) we obtain 

- 
r - ’ /  a o - ( i + t ) 1 / 2 / y  

- 1 t - W (  1 + t ) l j 2  -- t I i 2  - 1 t ‘ / * ( t - ’  - 1) 
a P Y  

1 - t  - 1 - 1 - (1  + t ) I i 2  
a P Y 

t 1 

a Y 
- 0 - ( l + t ) ’ ’ 2  

- ( I  + t )” ’  0 - - ( l+ t ) ”2  
t 2  

a d e 

t 1/2  
- 

- * t-I  

1 t ‘ 1 2  t -- - ( r - ’ -  t )  -- (1 + t ) ’ 1 2  
1 
a 2d e 

t 1 1 [ ‘ / 2  - - ( t - ’ -  t )  -- (1 + t ) ’ 1 2  
a 3 2d e 

1 

- 

t ’ # , 2  
- 

t ‘ i 2  

- ( 1 + t ) ” 2  0 - (1 + t )” ’  
~ d e a - 

and 

x6x-2+ t ’ i2( i+t )x2x2+t2x-2x6=~ 

- X 6 x 2  + t - ’ j 2 (  1 - t)x2x2 + x - ~ x ~  = o 
txgx-2 - t l/*X2X2 + x-zxe = 0 

for h 1  = t 

for h2 = - r - ’  
for ,T3 = t - 2 .  

where 

a 2  = t 2 +  t + 2 +  t - ’  + t-‘ 
p 2 = 1 + t  

d 2  = f ( t +  t - l ) ( l +  t)’ 

y2 = t 2 +  t +  1 + t - l  a2  = t 4 +  t 3 +  t 2  

e’ = t 4 +  2r3 +2t2+ t .  

1 0  0 - t  

t o o  

where p2 = 1 + t2 .  
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= 

For ,il = t :  

t 

P 
0 -- 0 

t - ‘ / 2  1 i 2  

- ( l - t )  0 -- 
b C 

1 

P 
0 - 0  

1 1 
0 -  

b C 
- 

t-I 

t - 1 / 2  

- - ( l + t ) ’ / 2  

- 
a 

a 
0 

(1 + t ) ’ ”  

a 
t - 
a 

(1 + t ) ’ l 2  
0 0 -  

Y 
[ I D  t y - 1 - 1 )  

P Y 
0 1  0 

1 
- 0  
P Y 

0 -- 

1-1  - 

(1 + t ) ” 2  
0 0  

Y 
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For h, = f C 2 :  

fx6x-4- t ( l +  t)-”2x,x0- f ” Z ( l +  ~)-”2X,X,+X-4X6=0 

t2x2x-, - f (  1 + t)”’x,x-, - t (  1 + t)”2x-2xo+ f”2X-4X2 = 0 
fl:2x + t - l / ?  

X-6X6 = x,x, 6 -6 

tx2x-6 - f (1 + f)-”2x,x-4 - f I ” (  1 + f)-”‘x_4x, + x-6Xz = 0. 

We have thus listed all of the commutation relations obeyed by the quantum 
algebras associated with the six-dimensional representation of SU(3) in terms of the 
explicit forms of the projectors. 
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